Product Features:
This stainless steel self-priming pump is assembled with mechanical seals, installed explosion-proof, and leak proof all year round. It is suitable for transporting various alcohols, beverages, dairy products, pharmaceuticals, gasoline, solvent oils, syrups, etc. at -35~+120 ℃.
This pump has the characteristics of compact structure, easy operation, small volume, light weight, stable performance, no need for bottom valve, and no need for injection when starting. After replacing 3-4 parts, the pump can be used to transport concentrated slurry, acid, alkali, salt and other liquids.
Installation and disassembly:
install
1. The pump can be laid and the position of the foot bolts can be determined according to the "Pump Outline Installation Dimension Table". But it is best to wait until the pump is delivered and proceed with construction according to the size of the base.
2. The self-priming magnetic pump is installed on the foundation, and the level of the unit can be adjusted using shims. The level should also be checked with a spirit level, and the concentricity between the pump axis and the motor axis should be rechecked and adjusted. The difference between the outer circle, upper, lower, left, and right of the coupling should not exceed 0.15 millimeters when checked with a knife edge ruler and a feeler gauge. The deviation between the end faces of the two couplings shall not exceed 0.2 millimeters.
3. The pump should not bear the weight of the pipeline, and the amount of pipeline should be supported by pipeline support equipment.
4. After installation, manually rotate the coupling to see if it is easy and flexible, and if there is any jamming phenomenon.
Disassembly and assembly
1. Unscrew the four screws connecting the bearing body and pump body, and loosen the mechanical seal and pump cover at the same time.
2. Unscrew the impeller nut (right-handed) to remove the impeller, key, and pump cover, and then remove the mechanical seal from the pump cover.
3. Use a slider to pull down the coupling, then remove the key, bearing end cover, and finally disassemble the shaft and bearing.
4. The assembly sequence of the pump is reversed as described above.
5. When reinstalling the inlet coupling of the suction pump, please note that the water blocking valve should be facing forward to ensure a snug fit with the front of the water blocking valve and ensure self-priming effect.
Mechanical seal installation:
1. When replacing mechanical seals, attention should be paid to the specifications and models that match the original ones.
2. During the installation of mechanical seals, cleanliness should be maintained and the sealing components should not be knocked To prevent damage and destruction.
3. When installing large and small sealing valves and dynamic and static rings, the surface should be coated with a layer of clean engine oil and transparent oil.
4. Install the static ring and large rubber ring into the pump cover, and then install them together on the shaft (note: the dynamic ring pin must be aligned with the drive hole of the impeller).
5. Push the ammunition seat and spring together to form a damaged assembly Using the spring seat surface as the force point, push it onto the main shaft, and the thrust should be compressed by the spring by 2-4mm before sliding on the shaft. If the spring is not yet compressed and can slide, it indicates that the fit between the dynamic ring and the main shaft is loose and the friction force is small. If the spring shrinks by more than 6mm and the dynamic and sealing rings still cannot slide on the shaft, it indicates that the fit is tight It should be checked whether the mechanical seal matches the original one.
Performance parameters:
Scope of application:
Does not contain corrosive liquids such as solid particles, strong acids, strong bases, ethanol, bleaching agents, photographic fluids, nitric acid, hydrochloric acid, hydrofluoric acid, acetic acid, sodium hydroxide, acetone, ethylene oxide, seawater, saltwater, etc.
Installation dimension diagram:
Corrosion resistance of main materials for water pumps (for reference)
medium | Concentration (%) | polypropylene | Concentration (%) | A B C | ||
25°C | 50°C | 20°C | 60°C | |||
sulfuric acid | 60 | √ | <30 | √ | Χ | |
nitric acid | 25 | √ | 20 | √ | Ο | |
hydrochloric acid | <36 | √ | <38 | √ | √ | |
hydrofluoric acid | 35 | √ | 40 | √ | Χ | |
acetic acid | <80 | √ | <20 | √ | Ο | |
sodium hydroxide | 100 | √ | √ | √ | ||
Potassium dichromate | 25 | √ | √ | √ | ||
sewage | Χ | Ο | Χ | |||
ethanol | √ | <50 | √ | √ | ||
acetone | √ | 10 | Ο | |||
Tetrachloroethane | Ο | Ο | Χ | |||
Freon 22 | √ | Ο | Ο | |||
bleaching solution | CL13% | √ | CL12.5% | Ο | Ο | |
Electroplating solution | √ | Ο | Χ | |||
Photographic liquid | √ | √ | √ |
medium | concentration (%) |
stainless steel | concentration (%) |
ceramics | ||
25°C | 50°C | 25°C | 50°C | |||
sulfuric acid | <5 | √ | Χ | △ | △ | |
nitric acid | 70 | △ | √ | △ | △ | |
hydrochloric acid | Χ | △ | △ | |||
hydrofluoric acid | Χ | 0~100 | Χ | |||
acetic acid | <20 | √ | √ | △ | △ | |
sodium hydroxide | 70 | √ | √ | Ο | Χ | |
Potassium dichromate | 40~60 | △ | △ | 10~20 | △ | △ |
sewage | Ο | △ | △ | |||
ethanol | △ | √ | △ | △ | ||
acetone | △ | △ | △ | |||
Tetrachloroethane | 50 | △ | △ | △ | △ | |
Freon 22 | △ | △ | △ | |||
bleaching solution | CL12% | Χ | △ | △ | ||
Electroplating solution | △ | △ | ||||
Photographic liquid | △ | △ | △ |
Note: △ is excellent; √ For good; Ο is usable, but has obvious corrosion; Severe corrosion, not applicable.
Physical and mechanical properties of PVDF
performance | unit | according to |
density | g/cm3 | 1.75-1.79 |
Ratio | cm3/g | 0.56-0.75 |
Melting point range | 0c | 155-170 |
Refractive index | n25D | 1.42 |
Mold Shrinkage | % | 2-3 |
Tensile strength (yield) | Mpa | 28-41 |
Stretching Strong Hair (Fracture) | Mpa | 31-52 |
Elongation (fracture) | % | 100-400 |
Impact strength (without gaps) | KJ/m | 107-214 |
compressive strength | Mpa | 55-69 |
Hardness (Shore D) | 70-80 | |
wear resistant | mg/1000r | 7.0-9.0 |
Ultimate Oxygen Index (l0 I) | % | 44 |
burning rate | V-D | |
resistivity | u194 | 1.0x10 15 |
Common dielectric numbers | 10 31 CYCles | 9.7 |
Chemical resistance properties of polyvinylidene fluoride (PVDF)
Chemical media | concentration (%) |
Maximum operating temperature ℃ | Chemical media | concentration (%) |
Maximum operating temperature ℃ | Chemical media | concentration (%) |
Maximum operating temperature ℃ |
hydrochloric acid | 36 | 135 | Hydrogen hydroxide | <10 | 85 | ethanol | 135 | |
sulfuric acid | <60 | 120 | Hydrogen hydroxide | 50 | 50 | ether | 50 | |
sulfuric acid | 80-93 | 95 | Ammonium carbonate oxide | 110 | formaldehyde | 37 | 50 | |
sulfuric acid | 90 | 65 | Calcium carbide oxide | 135 | acetone | 10% aqueous solution | 50 | |
nitric acid | <50 | 50 | Sodium Carbonate | aqueous solution | 135 | hydrazine | aqueous solution | 95 |
phosphoric acid | <85 | 135 | sodium bicarbonate | aqueous solution | 120 | benzene | 75 | |
phosphoric acid | 85 | 110 | ammonia | 110 | aniline | 50 | ||
acetic acid | 10 | 110 | salt water | 135 | toluene | 85 | ||
acetic acid | 80 | 80 | sodium hydrogen phosphate | aqueous solution | 120 | phenol | 50 | |
acetic acid | 100 | 50 | calcium phosphate | aqueous solution | 135 | Chlorobenzene | 135 | |
trichloroacetic acid | <10 | 95 | calcium oxide | aqueous solution | 135 | naphthalene | 95 | |
trichloroacetic acid | 50 | 50 | Potassium oxide | aqueous solution | 135 | Methyl Chloride | 135 | |
oxalic acid | 50 | Ammonium oxide | aqueous solution | 135 | chloroform | 50 | ||
Benzenesulfonic acid | aqueous solution | 50 | ferric chloride | aqueous solution | 135 | carbon tetrachloride | 135 | |
hydrofluoric acid | 40-100 | 95 | ferrous sulfate | aqueous solution | 135 | Ethyl Chloride | 135 | |
hydrofluoric acid | 40 | 120 | ammonium sulphate | aqueous solution | 135 | 1.2 Trichloroethane | 135 | |
Hydrobromic acid | 50 | 130 | ammonium sulphate | aqueous solution | 135 | 1.1.2 Trichloroethane | 65 | |
Peroxyacids | 10 | 95 | sodium nitrate | aqueous solution | 135 | Tetrachloroethane | 120 | |
Peroxyacids | 70 | 50 | ammonium phosphate | aqueous solution | 135 | vinyl chloride | 95 | |
NaClO | 6-15 | 95 | urea | aqueous solution | 120 | TRICHLOROETHYLENE | 135 | |
Potassium chlorate | 100 | carbon dioxide | 80 | dichloroethylene | 110 | |||
chromic acid | <40 | 80 | chlorine dioxide | 75 | natural gas | 135 | ||
chromic acid | 50 | 50 | chlorine dioxide | 65 | fuel oil | 135 | ||
Potassium permanganate | 120 | chlorine | element | 95 | paraffin oil | 120 | ||
hydrogen peroxide | <30 | 95 | bromine | element | 65 | |||
Sodium Peroxide | 95 | iodine | element | 65 |
Corrosion performance table of fluoroplastics (for reference only)
Temperature, ℃ | ||||||||
medium | Concentration% | 25 | 200 | medium | Concentration% | Temperature, 200 ℃ | ||
sulfuric acid | 0-100 | √ | √ | formic acid | √ | √ | √ | |
Oleum | √ | √ | Acetic acid (Acetic acid) | 0-Ice | √ | √ | √ | |
nitric acid | 0-100 | √ | √ | acetic acid | √ | √ | √ | |
Oleum | √ | √ | propionic acid | √ | √ | |||
hydrochloric acid | √ | √ | Acrylic acid | √ | ||||
phosphoric acid | √ | √ | Acrylic anhydride | √ | √ | √ (boiling point) | ||
hydrofluoric acid | √ | √ | methacrylic acid | √ | √ | √ (boiling point) | ||
Hydrobromic acid | √ | √ | butyrate | √ | √ | √ | ||
Hydroiodic acid | √ | √ | bitter | √ | √ | √ | ||
hydrocyanic acid | √ | √ | lauric acid | √ | √ | √ | ||
nitrous acid | √ | √ | palmitic acid | √ | √ | √ | ||
nitrous acid | √ | √ | stearic acid | √ | √ | √ | ||
chloric acid | √ | √ | oleic acid | √ | √ | √ | ||
hypochlorous acid | √ | √ | linoleic acid | √ | √ | √ | ||
perchloric acid | √ | √ | abietic acid | √ | √ | √ | ||
Tetraphosphate | √ | √ | fatty acid | √ | √ | |||
carbonic acid | √ | √ | chloroacetate | √ | √ | √ | ||
chromic acid | √ | √ | lactic acid | √ | √ | √ | ||
silicic acid | √ | √ | Oxalic acid (oxalic acid) | √ | √ | √ | ||
boric acid | √ | √ | fumaric acid | √ | √ | √ | ||
arsenic acid | √ | √ | citric acid | √ | √ | √ | ||
Selenate | √ | √ | nicotinic acid | √ | √ | √ | ||
Fluosilicic acid | √ | √ | ||||||
fluoboric acid | √ | √ | ||||||
Chlorosulfonic acid | √ | √ | ||||||
aqua regia | √ | √ | ||||||
mixed acid | √ | √ |
medium | Concentration% | Temperature, 200 ℃ |
sodium hydroxide | √ | |
potassium hydroxide | √ | |
ammonium hydroxide | √ | |
Magnesium hydroxide | √ | |
calcium hydroxide | √ | |
Aluminum hydroxide | √ | |
Barium hydroxide | √ | |
ferric hydroxide | √ | |
ferrous hydroxide | √ | |
nickel salt | √ | |
Nickel Sulfate | √ | |
Nickel nitrate | √ | |
Nickel chloride | √ | |
Zinc salt | √ | |
zinc sulfate | √ | |
zinc nitrate | √ | |
Zinc Chloride | √ |